
How to adapt
information security

in agile development?

2 LocalTapiola | How to adapt information security in agile development?

How to adapt information security in
agile development?
•	 Foreword
•	 LocalTapiola - The lifelong security company
•	 Introduction

•	 Information Security in Agile development and why do we write about it?

•	 Related processes
•	 SecDevOps, an iterative way of doing
•	 Security and project roles
•	 Preparing for the implementation -

threat analysis
•	 Threat modelling

•	 Managing information security and
privacy requirements in a project

•	 Execution - measuring security
progress and keeping track of
activities

•	 Production - handover of security
to operations
•	 Bug bounty programs
•	 Web Application Firewall

•	 Creating secure coding practices
•	 Top n list
•	 Positive practices

•	 Secure mobile development
•	 Architecture areas

•	 General quick tips
•	 Implementation focus areas
•	 Threat scenarios
•	 Android
•	 iOS
•	 Backend APIs

•	 Logging
•	 What to log
•	 How to log

•	 Security review guidelines
•	 Preparations

•	 Checklist of preparations
(project manager)

•	 Security review
•	 Business case and data flow
•	 Assets
•	 Attacker actions
•	 Impact

•	 Technical guidelines
•	 Security mechanisms (lead

developer / tech lead)
•	 Remediation
•	 Example focus areas

•	 Documentation
•	 Further reading

•	 Secure input and output handling
•	 Input
•	 Output
•	 Integrations

•	 3rd party libraries
•	 Guidelines for compliance
•	 Choosing a library
•	 Using a library
•	 Updating a library
•	 Practical approach
•	 Vulnerability and patch analysis

•	 Steps for vulnerability
analysis

•	 HTTP headers and CORS
•	 Header configuration
•	 CORS configuration
•	 Further reading

•	 Reference list
•	 Credits

3 LocalTapiola | How to adapt information security in agile development?

Foreword
How do we create software that does its job and is also secure? Not the way we used to.

Old software development paradigms were useful in their time, but they did not consi-
der the situation where production software is always connected and exposed to not just
friendly use but also adversarial attacks. They did not consider extensive use of third-
party software. We need new paradigms and methods to produce software that are both
innovative and secure. Without security as a primary goal, software and hence our busi-
ness will not be trustworthy. Without trust, no business.

Fortunately, there is something that stimulates innovation and at the same time enhances
security: speed of action. When we shorten the software development cycles, we can
experiment more and learn faster. Iteration results in more innovation. With faster and
ultimately continuous software integration and deployment, we can fix security vulnera-
bilities much faster. This results in better security, i.e. a lower risk of data breach.

A second thing that improves both innovation and security is information sharing. Soft-
ware code has not one but two tasks: To tell a computer what to do, and to communi-
cate ideas between developers. By sharing ideas and code openly, new ideas will emerge
sooner. Flaws will also be detected sooner. When they are fixed, security improves. Teams
that openly and immediately share information, insights and ideas with each other out-
perform all other teams.

Today no software is developed in isolation. Every piece of code takes inspiration from
some previous piece of code. Every application uses third-party frameworks and libraries.
The bill of material of a software application can get extremely complicated. Our princi-
ples and rules for how to choose a library and when to update it are as important as the
code we write.

Software is the expression of human intent. What goes on in our brains dictates what the
software code will look like. Coding culture and design principles have dramatic effect
on the outcome. The best software development teams (and collections of teams) spend
time defining their culture, emphasizing priorities such as security, robustness and ele-
gance of code. As a result, their every line of code, from the moment it is first written,
lives up to a higher standard than if it were haphazardly thrown into the CI/CD frame-
work.

Software engineering has become an exceedingly collaborative practice. In the greatest
applications, software collaborates well with other software, and engineers collaborate
well with other engineers. It is the hacking mindset: figure out things, share your findings,
build something cool. We are open to input from others. Quality and security is everyone’s
duty.

Mårten Mickos
CEO, HackerOne

4 LocalTapiola | How to adapt information security in agile development?

LocalTapiola - The lifelong security company
Our mission is to help our customers secure their lives and businesses. We tailor the secu-
rity, financial and health products and services included in lifelong security to suit our cus-
tomers.

LocalTapiola will accelerate its renewal into a lifelong security company. In particular,
renewal means a shift from traditional reactive action to proactive, individual and pre-
ventive promotion of our customers’ lifelong security.

We will continue to develop our customer experience, with the aim of distinguishing our-
selves by being genuinely caring, personal and rewarding. Customers get lifelong secu-
rity solutions that are tailored to their individual needs and protect throughout life. In the
strategy period, we aim for a significant increase in the number of customers whose life-
long security level is optimal in all aspects: security, health, finances (3T customer rela-
tionship).

In addition to easy access and damage and emergency services, we will introduce proac-
tive services to help customers reduce damage, improve financial success and promote
health. For LocalTapiola, increasing services creates a competitive advantage in the insur-
ance business as well as opportunities to influence customer paths and profitability.

The core of our strategy is to provide our customers with tailored lifelong security solu-
tions and related services. Our success is based on customer-oriented service leadership, a
regional company structure, a professional and passionate culture of lifelong security, and
the utilisation of knowledge to improve our customers’ lifelong security and develop our
business.

Introduction
The document you are reading showcases a high-level approach for including security in
agile development, with handpicked examples of supplementary documentation mostly
consisting of generic application security guidance. The goal of this publication is to offer
a view into a living, real-world implementation.

The sections and chapters below are a sample of created instructions, with minor modifi-
cations to remove organization-specific details.

Information Security in Agile development and why do we write about it?
Software developers can be highly skilled and still forget about security. Why is that? Even
though we can read about security breaches almost every day, in projects many times
security is still something that is neither budgeted, in scope, nor reasonably resourced.
Understanding is often lacking, as is guidance - security is seen as something that is
done just before going into production. The final hurdle to be crossed. LocalTapiola works
towards a better world where security is holistically considered throughout the project
and its life cycle, in the budget and right from the beginning. It requires security knowl-
edge in the organization and sometimes hard work to implement. Benefits on the other

5 LocalTapiola | How to adapt information security in agile development?

hand are better cost forecast, and achieving production installation schedules, instead of
missing them due to security issues. The aim is to have a good user experience with trans-
parent security, no hacks nor quick fixes and above all secure and reliable systems that
both customers as well as LocalTapiolas personnel can trust.

This leaflet is not the whole truth. By no means does it cover all activities we do around
security. Its purpose is to give you some insight into how we do it at LocalTapiola and the
things we have found important to specifically raise.

Have you thought about security in the projects you are working with?

Related processes
This section introduces some non-technical ways to achieve a better security outcome in
the project. The purpose is not to cover any specific project methodology but rather to
point out some best practices that can be used in a variety of ways and implemented into
different development models.

SecDevOps, an iterative way of doing
SecDevOps includes security inside in the development and operations processes. In a
SecDevOps approach, secure operating models are integrated into the DevOps process.
SecDevOps promotes flexible cooperation between development (Dev), information secu-
rity (Sec) and operations (Ops) teams. The primary goal of SecDevOps is to narrow and
ultimately close down the potential gap between software development and information
security, while ensuring prompt delivery and implementation of the code in a secure
manner.

6 LocalTapiola | How to adapt information security in agile development?

Security and project roles
It is important to understand
that security is not only the secu-
rity departments or security teams
responsibility. Security should take
place throughout the application/
software development life cycle
in the project. Many roles in the
life cycle should be aware of the
basic security and privacy require-
ments in the industry, especially if it
is a regulated one. For example, how
to handle customer data (privacy),
when a strong identification should
have been used? What information
and which events can be logged and
which must be logged. The list is long.
To support project security needs, it is
good to have a specific role - a Secu-
rity Champion is one of the project
roles that must be considered.

Preparing for the implementation - threat analysis
Before commencing a threat modelling workshop, a short checklist should be filled out by
the stakeholders. The checklist is used to gather some basic information about the appli-
cation, like

•	 Who will be using the application?
•	 What is the application business purpose?
•	 What data is processed in theapplication?
•	 Where will it be deployed?

The information gathered in the checklist is used by the security team to better under-
stand what topics must be covered during the threat modelling workshop. Each organ-
ization should define its own checklist, as its contents are highly dependent on context,
industry and business criticality. The checklist also assists the different owner roles and
stakeholders to understand what may or may not affect security decisions in the project.

Threat modelling

Threat modelling can be conducted either using a formal, process-oriented methodology
or more informal, discussion-based approach. Understand what is needed for your devel-
opment target, and choose accordingly. However you decide to threat model your tar-
get, it is recommended to break it down to manageable chunks and start from the actual
intended business process.

A Security Champion is defined
in OWASP (https://www.owasp.org/
index.php/Security_Champions) as

“active members of a team that may help
to make decisions about when to engage
the Security Team”. You can also call them
Security Coaches as they should work
like Agile Coaches to help the develop-
ment teams and the projects to hit secu-
rity goals with a good spirit. Who then
can become a Security Champion in the
organization? The Security Champion/
Coach should have an interest in informa-
tion security but not necessary be a secu-
rity expert. The role requires the ability to
run and maintain security related stories
or requirements in the sprints, identify
possible problems, support the team and
coordinate security tasks with in-depth
security experts if needed.

7 LocalTapiola | How to adapt information security in agile development?

A more formal process, focusing on complete diagrams and documentation are suitable
for environments where changes or updates are costly, regulatory documentation require-
ments exist or safety is paramount. Depending on your situation, early stage architectural
choices or a completely new system may benefit from this kind of a process. For less sea-
soned professionals, it can also be easier to follow a predefined set of steps.

Downsides can include large amounts of data flow diagrams and documentation, which
are more or less identical, with the same risks, threats and technology choices. For-
mal approach can also be heavy on the project teams, disincentivizing participation
and demand-based scheduling. The amount of documentation increases the required
resources for each session.

Informal and more casual approach works well in an environment where technology
choices are homogeneous, architecture defines security controls, and risks & threats are
well understood. For seasoned professionals a friendly chat over an architecture dia-
gram often reveals the obvious pitfalls, especially if the target is limited in size. It is rec-
ommended to produce a memo from the session, identifying the findings and potential
weaknesses for the development/project team to take into consideration during develop-
ment. Less process and diagram-focused discussion session moves the burden on the sub-
ject matter experts, making attendance more light-weight for the development/project
team members.

Downsides can include missed weaknesses and vulnerabilities, heterogeneous coverage
and difficult-to-understand logic when a seasoned subject matter experts use their expe-
rience to cherry pick issues. If junior security people, or others interested in learning, are
present it is useful to open up the thinking and thought processes.

Managing information security and privacy requirements in a project
Threat modelling is responsible for producing a set of security non-functional require-
ments (NFRs) for the project. For the sake of efficiency, a predefined set of NFRs should
be provided to the project from which the project can pick and choose any and all rel-
evant items. The predefined list is usually maintained by the security team. The NFRs
aim to cover as many different security aspects as possible. However, if threat modelling
uncovers anything that may not be already covered by the predefined NFRs, the project
should add customized NFRs per their own need.
The NFRs contain items and topics about

•	 Processing and managing PII
•	 Injections and user input
•	 Authentication, authorization and access control
•	 Secure architecture, hardening and configuration
•	 Logging
•	 Various technical security issues

Execution - measuring security progress and keeping track of activities
Once threat modelling is done and the project has its NFRs, it is time to maintain the
security stance throughout the project, all the way into running the application in pro-

8 LocalTapiola | How to adapt information security in agile development?

duction. To do this, some simple metrics and checkpoints should be involved to make sure
security is not forgotten or overlooked. These metrics should be chosen in such a way that
it is easy enough for the project or the security team to gather the data manually or par-
tially automate it. The actual metrics must depend on the organization or business, but
there are some generic items that can be used for almost all application development.
Metrics - especially checkpoints - should be put on a timeline or attached to certain
phases of the project model.

By having checkpoints and metrics available for the project from the start, security is not
a running target.

Potentially usable metrics and checkpoints may include

•	 The initial pre-threat modelling checklist has been completed and the results of 		
the threat analysis are available to the project

•	 Data protection impact assesment (DPIA) has been done
•	 The role of the Security Champion (or similar) has been assigned and the Security

Champion is active in the project
•	 Security best practices have been identified and chosen (there should be a

predefined library of best practices that is maintained across all projects)
•	 Security NFRs are progressing in each sprint or phase (this must be a continuous

metric)
•	 Data flows have been documented
•	 The architecture has been documented including security boundaries
•	 Security decisions are documented - accepted risk is noted as well as any

mitigations
•	 Security exceptions are approved and documented
•	 Static security scanning is done regularly (SAST and SCA)

Security testing covers many things including penetration testing. Penetration testing can
be used for additional metrics and checkpoints. However, penetration testing as a single
security checkpoint - at the end of a project - is not recommended as it does not encour-
age a built-in holistic security-by-design approach in the development life cycle.

Production - handover of security to operations
Every project targets production. While that means the project is over it does not mean
that security is over. The responsibility of handing over security from development to
operations is not always straightforward - and as the organization grows bigger and
things become more complicated, so does the handover and responsibility for security.

Bug bounty programs

Bug bounty programs are increasingly popular and also maturing well. Running a success-
ful bug bounty program is not straightforward and requires good underlying processes -
and patience. As new services and applications are rolled out, they are taken into the bug
bounty program by default.

9 LocalTapiola | How to adapt information security in agile development?

The LocalTapiola bug bounty pro-
gram has been very successful in find-
ing complicated flaws and has proven
very valuable in the post-GDPR world
in finding flaws before they become
issues. The program has rewarded
nearly 300 reports and paid out over
100 000€ in bounties to date. Find-
ings from off the shelf applications and
software has been duly reported to
authorities for responsible communica-
tion and disclosure (when applicable).

Web Application Firewall

While we aim to have perfectly flawless software in production that is never the case in
reality. In addition, the complexities, dependencies and even peculiarities of the underly-
ing systems and integrations means that the word “quick” in quick fix can mean days or
weeks. Hence we need another tool to be able to mitigate issues when no other options
persist. While a WAF is no silver bullet and by no means an excuse for bad code, it does
provide a means for quick (as in minutes or hours, not days or weeks) fixes.

Each application requires a separate
policy - the set of rules that are applied
to the web application firewall. The
rulesets may contain everything from
disallowed HTTP response codes to
context-sensitive regex pattern match-
ing for specific parameters. Maintain-
ing these rulesets is tedious work. The
WAF is many times used in conjunction
with the bug bounty program. When a
flaw is discovered, a quick fix is done
with the WAF (while a long-term fix is
planned on the backlog). For off-the-shelf software the challenge is that there may not
even be a fix or that the manufacturer does not “acknowledge” the issue in the first place.
In these cases the only way to mitigate is to plan and design rules.

The WAF looks at every parameter, every request, every path, every cookie and every
header - everything. The WAF does not automatically know how the application is sup-
posed to work (hence the need for rulesets). Out-of-the-box it makes assumptions. Usu-
ally these assumptions are 90% correct, but the remaining 10% might make the appli-
cation unusable. For this reason, the developers must partake in defining the ruleset. It is
important to understand

•	 the most critical functionality of the application
•	 anything that is custom and outside of what is considered “normal”
•	 specific cookies and headers that are used
•	 parameters and values outside of normal US-ASCII character set
•	 ...and a whole lot more

Bug bounty is a program into
which hackers can participate
for a chance at a bounty reward.

Bug bounty programs are organized by
companies from all industries. The pro-
gram can be open, private or time-bound.
The goal of a bug bounty is to have the
good guys find bugs in the target appli-
cation or system before the bad guys do -
and get paid for it. The more valuable the
target, the bigger are also the rewards.

WAF stands for Web Applica-
tion Firewall. There is a clear dif-
ference between a “normal”

firewall and a WAF. The WAF inspects
the actual contents of http/https traf-
fic for attack patterns, whereas a nor-
mal firewall is only concerned about ports
being open or closed.

10 LocalTapiola | How to adapt information security in agile development?

Technical guidelines
The instructions are relatively middle of the road, suitable for wider consumption. Some of
the topics you encounter in the daily life of software security depend heavily on the used
frameworks and architecture components. For those, it makes the most sense to create
technology specific guidance, which is kept up-to-date. After all, if there are specific tools
and architecture components with which to solve the problems, why not give detailed
instructions, instead of forcing everyone to find their own solutions to the same problems.
One approach to creating your own instructions is to look at your environment, current
processes, used technology stack and ensure all layers have been covered.

Creating secure coding practices
There are different approaches with which to tackle this topic. Here we introduce two
commonly used viewpoints - top n lists and positive practices. Taking focus to eliminate
a handpicked list of vulnerabilities typical for your own organization is a common rea-
son for using a top n list. Creating a set of positive practices, which need to be followed,
approaches the same problem from another direction. Both viewpoints have their pros
and cons. This chapter attempts to give you guidance on how to create your own - and
describe what can go wrong even with good intentions. By understanding the difference
between the two, you can start finding the right way to implement secure development
methods in your organization. One size rarely fits all.

Top n list

By creating a list of vulnerabilities, even if based on real world data, there is a risk that
this criteria is not updated over time as environment and technology evolves. An out-
dated list looks in the past, instead of focusing on software developed for tomorrow.
Unless communicated properly, it can become the lowest level of security - top n lists can
be good awareness tools for promoting application security, but rarely work as such for
properly securing an application. Depending on the development target, parts of the list
can be irrelevant, watering down the message. The descriptions should contain informa-
tion on how to avoid the issues, not just describing issues and their impact.

Vulnerability focused approach is good for trying to eradicate complete vulnerability
classes, especially if you cannot tackle them with other controls. This should be comple-
mented with technology specific best practices, and ensuring these do not become the
only security criteria - rather a litmus test for software quality. The approach should be
a combination of relevant historical data from identified vulnerabilities (internal reviews,
assessments, bug bounty or other external reports), and handpicked technology specific
pitfalls. If you have suitable intelligence available on current trends or industry views, use
this to enrichen the list.

Spend effort to make sure this does not become your security guide, and it is regularly
updated.

Positive practices

In theory, focusing on the good practices and software development methods yields posi-
tive outcomes. The problem with high level concepts is that interpreting their meaning to

11 LocalTapiola | How to adapt information security in agile development?

the development target in question requires seniority and understanding of secure devel-
opment. Often the people who can best interpret them are the same who are already
practicing secure development practices, and have no need for generic guidance. For jun-
iors, learning is often easiest with concrete examples. Having said that, by focusing on
practices which cover a lot of ground, when implemented properly, can yield positive out-
comes. For example, strict and well-defined input validation easily tackles a large part of
the attack surface.

The practices must have a good match with the technology, development environ-
ment and languages. Try to categorize your practices to make it easier for the reader to
approach the topic - for example language, target environment (web, embedded, mobile,
mainframe, etc.), technology, and product. Finding the right balance between giving
high level guidance versus detailed implementation specific practices or secure patterns
depends on your ecosystem and partner network. Well-designed high-level practices and
patterns age well whereas technology specific instructions may require frequent updating.
Hopefully your partners have the best subject matter expertise, and are comfortable cre-
ating and updating their own developer guides to complement existing documentation.

Be sure to regularly review the effectiveness of the practices.

Secure mobile development
Secure and privacy aware mobile development requires one to understand the intricacies
of chosen platforms, in addition to having a holistic view of the overall security and pri-
vacy needs. This chapter focuses on platform specific areas, where care should be taken.
Instead of viewing this guidance as a comprehensive security requirements documenta-
tion, the reader is advised to familiarize themselves with other additional security materi-
als and platform best practices.

Purpose of this chapter is to focus on areas previously recognized as having a potential
impact in mobile development. As your use cases may differ from the underlying assump-
tions, the security and privacy themes addressing your needs might differ as well. If you
identify topics or needs not covered by the chapter, supplement it with additional infor-
mation or create your own guidance matching those needs.

Architecture areas

General quick tips

•	 Follow technology stack best practices
•	 Use threat and risk modelling to identify solution specific issues and areas of

interest
•	 Make sure security requirements are included in NFRs, acceptance criteria and

stories
•	 Minimize attack surface by defining a strict set of features and input, and disabling

unnecessary functionalities
•	 Create simple solutions, avoid complexity. Simple is easy to review and understand.
•	 Harden the configuration of chosen technology components. Investigate what are

the applicable vendor or industry best practices.

12 LocalTapiola | How to adapt information security in agile development?

Implementation focus areas

•	 Review threat modelling findings, or hold a new threat modelling session if a
solution is undergoing major changes which may affect privacy or security

•	 Focus on authentication and authorization
•	 Validate all inputs
•	 Understand what data is stored locally by the application

•	 Areas of interest
•	 Intentionally stored data
•	 Cached data

•	 What information is cached, where, for how long, are the caches
cleared?

•	 Note – web view caches data, unless otherwise instructed
•	 How sensitive is this information?
•	 How is it protected?

•	 How does the application protect locally stored information?
•	 How does the application prevent access to live services?
•	 Utilize keychain whenever information needs to be protected

•	 Do not write sensitive data to client-side logs (preferably disable client-side logging
in production builds)

•	 Use password input field when requesting user to enter PIN or password
•	 Protect network connections

•	 Enforce the use of TLS
•	 Pin certificates for organization-controlled resources

•	 Do your homework on any third-party libraries

Threat scenarios

The developer must assume the following when developing mobile clients

Attacking the backend

•	 The attacker has root access on the device, can view the file system & debug or
modify applications

•	 The attacker can view and modify application traffic

Attacking the user

•	 The mobile phone contains a malicious application, which does not have root access
•	 The end user will eventually lose their device.

Assumptions for backend APIs

Attacking the backend

•	 The attacker can modify the API requests sent by the client

Perform a risk analysis for the above scenarios and mitigate as required.

13 LocalTapiola | How to adapt information security in agile development?

Android

Available documentation

•	 Android security best practices: https://developer.android.com/topic/security/best-
practices

Special considerations

•	 Do not store sensitive data on external storage or in SharedPreferences
•	 By default, set android:exported to false for all components
•	 For more information about certificate pinning, see documentation on Network

Security Config or OkHttp CertificatePinner
•	 If application handles special categories of personal data, use FLAG_SECURE

in WindowManager.LayoutParams
•	 When sensitive information is entered by the user, use textNoSuggestions or

textVisiblePassword (note that this disables gestures typing as well)

iOS

Available documentation
•	 Developer documentation: https://developer.apple.com/documentation/security
•	 https://www.ncsc.gov.uk/collection/application-development/apple-ios-application-

development/secure-ios-application-development

Special considerations

•	 Do not store sensitive data in UserDefaults
•	 For more information about certificate pinning, see documentation on AlamoFire

ServerTrustPolicy
•	 Hide sensitive information from the UI when applicationDidEnterBackground is

called (either remove the sensitive information or replace screen with LocalTapiola
logo)

•	 Use URLSession Task (:dataTask:willCacheResponse) to control caching of sensitive
data

•	 When sensitive information is entered by the user, set UITextField
autocorrectionType property to UITextAutocorrectionTypeNo

https://developer.android.com/topic/security/best-practices
https://developer.android.com/topic/security/best-practices
https://developer.android.com/topic/security/best-practices
https://developer.apple.com/documentation/security
https://developer.apple.com/documentation/security
https://www.ncsc.gov.uk/collection/application-development/apple-ios-application-development/secure-ios-application-development
https://www.ncsc.gov.uk/collection/application-development/apple-ios-application-development/secure-ios-application-development

14 LocalTapiola | How to adapt information security in agile development?

Backend APIs

Special considerations

•	 Verify that user has been authenticated
•	 Perform authorization checks for incoming requests

•	 Store security relevant data in the session on the server side, not on the client
side

•	 If the client needs to choose between different items (say watch in a watch
winder), do not refer to the serial number directly - store this information in
session, and use indices on client side
•	 that, is instead of having parameters like { “watch”: “<serial number

here>” }, use parameters like
{ “watch” : 2 }

•	 this practice minimizes the available attack surface and helps avoid
authorization vulnerabilities

•	 Validate all inputs
•	 Read and use only the expected parameters
•	 Verify type, format and length of received input, whenever possible

•	 Decide explicitly on what fields need to be returned from backend requests to the
client
•	 Avoid returning all received data, unless it is actually used by the application
•	 Avoid unnecessarily returning sensitive values, such as serial numbers

•	 Minimize technical error message contents
•	 Use Cache-Control headers to advise client on whether to cache results (instruct

not to cache sensitive information)
•	 Design logging to preserve end user privacy (e.g. do not unnecessarily log sensitive

information) while preserving a sufficient audit trail
•	 Distinguish between error logging used for resolving technical issues (no

sensitive information present, many people have access) and detailed audit
trail (contains sensitive information, only a handful of people have access)

•	 Follow organization logging practices
•	 Avoid debug logging in production environments

Logging
Although some companies operate under tight regulation and a regulated industry does
add requirements to logging, logging should be a part of all software. Non-repudiation
is the knowledge that someone (customers, personnel) cannot deny the validity (the fact
that something happened or occurred) of something. In practice, proving this requires
thorough logging. Whenever there is a user that does something with data, non-repudia-
tion becomes a valid case. Cases for non-repudiation may include

•	 A customer has submitted information that he/she later denies knowledge of
•	 A customer has changed account numbers
•	 Personnel has changed customer information
•	 Admin has accessed data

Logging actions and activities is the key to non-repudiation. Investigations may reach
many years into the past. Depending on what information or data the application is pro-

15 LocalTapiola | How to adapt information security in agile development?

cessing or making available, different laws may also apply. Under the law, forensic inves-
tigations may be relevant. Investigations may reach many years into the past. Logging -
and managing logs - is key for success.

What to log

Logging is part of application’s accessibility, information availability and backup. In such
cases where traceability is required, logging is the answer. Logging must be implemented
systematically throughout the codebase.

The log source is the system that generates information that is logged. At a minimum, it
must generate logs on usage, errors and security exceptions. Logs must be written for at
least the following situations:

•	 Security exceptions and anomalies
•	 Errors and operational exceptions
•	 Accessing or processing personal information (but not necessarily logging the

information itself)
•	 Administrative tasks within the application

Log events are the actual events that generate logs.

•	 Login / logout
•	 Adding, deleting or changing data using the application UI
•	 By default, logs shall not contain critical information such as personal data of

individuals. If storing personal data is required, log must be treated as an audit log.

Operational logging is what we know as “normal” logging - logs that are used to solve
problems in production, trace events from the past and get an overall understanding
on how the application is working. This log data is usually used both in normal as well
as exceptional situations. Operational logging is usually very technical and may contain
instrumentational data.

Operational logging does not and should not contain debug information in abundance. It
is not a place where everything is dumped.

Audit trail logs contain information about transactions - who, what, when and why. Audit
trails are used to prove non-repudiation, usage statistics and forensic information related
to application usage.

Audit trail logs MAY contain PII data although PII data should be masked if logged regu-
larly. Audit trail logs may not be accessible by anyone - access to audit trail logs must be
restricted.

How to log

The events must be consistently formatted when written to logs. Logs should be at least
partially human readable, but log events must be consistently formatted and log events
should be kept short. One event should always be on one single row without a carriage
return - if the log data may contain carriage returns, filter those out. Overall, log output

16 LocalTapiola | How to adapt information security in agile development?

must be sanitized just as any other output - don’t dump raw user input to the logs. Logs
should be written as key=”value” pairs so that they can be processed by a log manage-
ment system.

Rotating logs is the responsibility of the party creating or writing logs, not the consumer.
In practice, make sure that there are routines for rolling and rotating logs either using (for
instance) application server built in features or operating system tools to achieve this.
Rotating logs is very important - it is the only way to make sure disk space is not filled or
wasted. In addition to rotating, old log files should be deleted - depending on the type of
log.

Good practice is to rotate logs by their date, not by their size. This makes it much easier
to find the correct logs later on.

Many times the value in logs lies in correlation to other logs. For this to be possible and
straightforward, it is of utmost importance that the timestamps within the logs are
matching. This in turn, requires that the log sources (servers, applications, devices, appli-
ances, ...) are using the same (or of equal reliability) source for their time. In practice, serv-
ers MUST use NTP and their clocks (at worst) must be within a few seconds of each other.

Finally, logging into one centralized location where logs can be searched, protected and
archived is very much recommended.

Security review guidelines

These instructions are aimed at the project team, with the assumption that the reader
has no specific security expertise or background. The purpose of this document is to
introduce to non-security experts security reviews and the process of doing them. These
reviews performed during the project are not a replacement for threat & risk modelling, or
a security assessment, performed for systems. The security review is best done by mem-
bers of the project team, as the discussions also help shape future design choices.

Security reviews must not be delegated or outsourced to people outside the project team.
The biggest long-term value comes from learning about building effective security. These
decisions must be done and understood by the project team. The most effective security
reviews answer precise, predetermined questions. Coming up with those precise questions
is half the battle. To best equip for answering those questions, learning the ins and outs of
the used technology is in a key role.

TL; DR

•	 Who: Project team (non-security professionals)
•	 What: Internal review done by the project team, during systems development
•	 When: Latest at sprint review, preferably before
•	 Why: To protect end users, their privacy, and employees and assets
•	 How: Described in this document

17 LocalTapiola | How to adapt information security in agile development?

The focus of a security review should be on results and improving the security of the sys-
tem. Security reviews must be blameless. The point is not to find flaws from someone’s
work, but to improve the security of systems benefiting customers and users. Sometimes
improvement happens by making someone’s code or design stronger. Findings should be
treated as issues affecting the system, not as personified mistakes.

The review process should be light and agile enough to allow for an incremental approach.
It’s always better to have several quick and lightweight reviews during the development,
than try to squeeze everything into a one session which “adds security and privacy into
the project”. Security and privacy team is available to assist in the security reviews, if
security or privacy expertise is needed. The responsibility for the reviews remains with the
project, however.

Preparations

Review scope should primarily focus on the system under development, taking extra care
to spend time and effort on areas highlighted by threat and risk modelling. By choosing
and carefully understanding the scope, you gain valuable information on the system itself
and may come up with potential issues while thinking what really are the affected compo-
nents.
A security review relies on information - the business case, protected assets, high level
design and technical details about the implementation. The service should be approached
from the top down - business process, design, implementation. If something is fundamen-
tally insecure on a higher level, lower level choices can rarely solve those issues. Compared
to design-level choices, lower level mitigations are also often more resource-intensive and
complex, thus making them error-prone and expensive to
implement.

Is the idea to do a peer review for target X beforehand, walk-through the findings and
decide on what to do, OR is this a session where something is analysed? Former is a good
way to have open discussion with a larger team, the latter is more suited for a handful
of people who need to drill down to a critical, possibly complex and difficult component,
which requires varied and wide expertise on interconnected systems, data, business etc.

Make sure everyone knows what is expected of them, and decide the approach. Examples
are described below.

TL; DR

•	 Information required for a
security review
•	 business case
•	 protected assets
•	 risks identified during threat

& risk modelling workshop
•	 scope

•	 Key personnel

18 LocalTapiola | How to adapt information security in agile development?

Open discussion with a larger team:

•	 do a peer review for target X beforehand
•	 walk-through the findings and decide on what to do

Expert team analysis:

•	 an analysis session for a complex and difficult component
•	 a handful of participants
•	 varied and wide expertise on data, business, interconnected systems

Checklist of preparations (project manager)

The preparations checklist is intended for the development team project manager or the
technical team lead.

•	 Target and scope of the security review
•	 What are we reviewing (target and scope)?
•	 What are the key questions we want to answer with the review?
•	 How much do we have time and how much preparation is expected of

participants?
•	 Level of security review

•	 High level review
•	 Process
•	 Design

•	 Peer review for implementation
•	 Approach

•	 Walk-through and discussions for peer review findings
•	 Participants prepare for the session beforehand and come up with

possible findings or follow-up questions
•	 Peer review session

•	 The analysis is done during the session (works best with only a handful of
people)

•	 Something else you need?
•	 Required documentation

•	 Process description
•	 Design documentation
•	 Technology documentation
•	 Source code
•	 Applicable NFR (including related compliance requirements)
•	 Identified risks (from threat modelling and elsewhere)
•	 Attacker stories (explicitly chosen, and potentially applicable)

•	 Roles
•	 Who leads the review?
•	 Who demonstrates the target?
•	 Who’s taking notes?

•	 Participants
•	 in-scope developers
•	 architect
•	 security coach

19 LocalTapiola | How to adapt information security in agile development?

•	 Optional participants
•	 security & privacy team representative

Invite security & privacy team representatives only when explicitly needed. For example,
when new technology or architectural approach is introduced, article 9: https://eur-lex.
europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679#d1e2051-1-1 category
personal data is handled (special categories of personal data, such as health informa-
tion), threat and risk modelling has identified severe risks, or when you feel that additional
expertise is required.

Security review

When doing a review, one of the most important decisions is choosing the right abstrac-
tion level. Jumping between high and low level is most often counterproductive, due to
unnecessary complexity and context switching. That is - don’t analyse business logic or
high-level architecture and attempt to do a code review in a same session. Rather, focus
on one abstraction level at a time. There are exceptions to the rule, and a small expert
team might agree to do that in a goal oriented limited scope technical session.

Get everybody into the room. Have the key security questions distributed beforehand. Put
project architecture pictures, data flow or code on the screen. Get everybody focused on
the topic (and not reading their e-mails), with a cup of suitable beverage available. Spend
as much or little time as needed.

Below are topics and questions to help you get started. Your security review can choose
to use (some of) them, or approach the topic using a different style. As long as you get
findings or assurance that required security is in place, and otherwise improve the overall
security posture, it’s all good.

Business case and data flow

•	 Do we understand the business use case?
•	 What is the data flow? Is there documentation available

Assets

•	 What are we trying to protect?
•	 Customer information
•	 Sensitive Personally Identifiable

Information
•	 Credit card data
•	 Health information
•	 Brand image
•	 Authentication tokens
•	 ...

•	 Where?
•	 Server side
•	 In transit
•	 Client side
•	 When cached in ..
•	 ...

20 LocalTapiola | How to adapt information security in agile development?

•	 Are there third parties or partners involved?
•	 Treat external systems or services as such

Confidentiality, integrity, availability are key properties of an asset.

Attacker actions

•	 Modify information with something they can control
•	 web, mobile client, something they can touch digitally or physically

•	 View or read something they can see
•	 cookie values, parameter values, HTML and JavaScript source code, mobile

binary, reverse engineer the firmware from a physical device, ..
•	 Repeat a same valid transaction or modify it slightly
•	 Attempt to send in an invalid transaction without doing thing X
•	 Come up with an unexpected way of using the system to achieve something of

value to them
•	 Take cryptographic values (e.g. a hash) and use offline resources like GPUs to crack

a secret value used to calculate it
•	 Steal client’s computing device X and attempt to gain access to their information
•	 ...

Attacker tries to have an impact on confidentiality, integrity or availability with their actions.

Impact

•	 What’s the business impact or technical impact?
•	 Take impact cost into account - not all risks or vulnerabilities are worth

mitigating, and some risks are too great for the business to accept
•	 What are the implications if an attacker can view, modify, repeat, spoof, do thing X

to parts of the data flow?
•	 What happens if/when the data leaves our system to other internal or partner

systems
•	 is the integrity intact?
•	 what are the assumptions and responsibilities we’re passing onwards?

•	 does the recipient know this?
•	 is this approach future proof?
•	 is there a reason to do so?

The effect an attacker can have on a system is called impact. Business impact is the most
relevant criteria for determining the importance of a security issue. Sometimes techni-
cal impact can be small, sometimes big. Remember that an attacker can also try combine
multiple low impact issues into a chained attack, with an impact exceeding the sum of
the small issues.

21 LocalTapiola | How to adapt information security in agile development?

Security mechanisms (lead developer / tech lead)

•	 What controls (if any) exist already?
•	 Have we followed platform / framework best practices?
•	 What are provided by the architecture?

•	 Are these sufficient?
•	 What is the right level?
•	 Does adding extra controls cost too much or hinder usability?
•	 Does removing security controls lower cost or improve usability while risk level

stays the same?
•	 Do they work as intended?
•	 If additional controls are needed

•	 Does platform or framework offer security features?
•	 Is there a popular library available?
•	 Do we need a commercial product?
•	 Should we develop them ourselves?
•	 Do the capabilities offered by the architecture need improvement?
•	 Is the resulting solution in alignment with enterprise architecture?

Properly working security mechanisms (also called controls) prevent attacker from affec-
ting confidentiality, integrity or availability.

Remediation

•	 How can we remediate the finding?
•	 Completely
•	 Partially
•	 Can only be mitigated
•	 Cannot be fixed at all

•	 Work effort or cost
•	 Trivial
•	 Needs some effort
•	 Needs major effort
•	 Needs major design or architectural changes

Remediation describes what needs to be done to prevent the attacker from achieving
their goals, or making the impact smaller. Smaller impact or greater attack cost deters
some of the attackers.

Architect and product owner decide on remediation or a need for further evaluation. If
needed, they will communicate the situation to the security & privacy team.

22 LocalTapiola | How to adapt information security in agile development?

Example focus areas

•	 Authentication
•	 Authorization
•	 Session Management
•	 Input Validation
•	 Handling personally identifiable information
•	 Error Handling
•	 Secure Deployment
•	 Cryptographic Controls
•	 ...

Documentation

Document your findings in issue tracking or wiki, and a review summary in wiki referencing
the findings. It makes sense to document in your project documentation also items, which
are okay (with applicable reasoning and implemented controls) - this makes it easier to
organize future security reviews, facilitate assessments, analyse bug bounty reports and
library vulnerabilities, and to maintain the solution in the future.

Minimum documentation level is a memo. There is no need to copy & paste or replicate
material into a new document, it’s enough to reference them with a link.

Further reading

https://github.com/OWASP/ASVS (mostly for developers)

Secure input and output handling
A good amount of vulnerabilities can be avoided with strict input and output handling.
It can be considered one of the foundation stones of application security, and lack of
explicit input validation is a good sign your application may be vulnerable to a host of
security issues. Validating input against a predefined expected format acts as a first of
defence. Understanding the business requirements and planning parameter use before-
hand helps create robust solutions.

When planning your input and output handling, take a look at the complete dataflow and
expectations encountered along the way, and minimize all accepted content.

Complement input validation with thorough dataflow analysis, authorization, using indi-
ces instead of raw data elements (when possible) and expecting the unexpected. Output
handling comes into play, when that received input is stored, processed or otherwise han-
dled elsewhere inside the organization. Assume the worst.

https://github.com/OWASP/ASVS

23 LocalTapiola | How to adapt information security in agile development?

Input

•	 Validate the following whenever possible
•	 Type
•	 Format
•	 Schema
•	 Length
•	 Character set

•	 Design input validation to be strict and enforce the underlying restrictions
•	 Invalid input will rarely be encountered in normal use cases

•	 Design the GUI to support a smooth user experience
•	 Inform user what is expected (and don’t submit invalid content further), if user

provided input is asked
•	 Do not rely on GUI for input validation, though

•	 Use whitelist-based approach
•	 If a blacklist needs to be used, make sure you have a really solid reason for it

•	 Do not attempt to sanitize the data - just stop processing and return an error
•	 How has the blacklist coverage been verified?
•	 How do your frameworks, libraries and other components work with different

encodings?

Output

•	 Understand the context where output happens
•	 Encode the information based on the output context and take care of special

control characters accordingly
•	 Different output environments have different structures and special characters

(Angular template vs HTML page vs JavaScript code block vs JSON)
•	 When dealing with data structures (such as JSON) decide what is needed by the

front end, and return only those elements
•	 Avoid passing received backend responses “as is” to the client if the responses

contain information not needed by the client

Integrations

•	 Understand the special requirements of the receiving application(s) (throughout
the whole data flow) when it comes to user input.

•	 What kind of input do they expect and what happens if the received input
contains control characters?

•	 What are the control characters in each context? Are the processed securely
before passing the data onwards?

•	 For example, you have a legacy system in the chain which uses character § as a
field separator. User input with § might break this processing.

•	 Document what the receiver can expect from the data, especially if the input has
been received from the end user

•	 e.g. verified and checksum validated credit card number vs raw free-form text
data with full UTF-8 support

•	 Ensure the received input cannot be confused into control structures during
integration transit, assuming end user submits content containing e.g. JSON, CSV
or other data structures

24 LocalTapiola | How to adapt information security in agile development?

3rd party libraries
According to studies, news (https://www.veracode.com/security/open-source-risk and
https://www.zdnet.com/article/backdoor-code-found-in-11-ruby-libraries/) and practical
experience from LocalTapiola’s bug bounty program, third party software and libraries
can introduce severe vulnerabilities into developed software. These flaws many times go
completely under the radar. Managing external software and libraries is not only a devel-
opment phase issue, but third-party components have to be taken into account during
the whole life cycle of an application. Libraries must be managed regardless of whether
the application is under active development or not.

Third-party libraries or software as a security domain include all third-party code that
is being used in the applications regardless of the programming language used. This
includes all solution stack components from the core systems to client-side JavaScript
and everything in between. The text refers to terms third-party library, software or code
interchangeably - in all cases the intention is to cover all uses of externally developed and
maintained code used in development projects, regardless of terminology.

As a technology, SCA (Software Composition Analysis) provides help through automated
scanning of code. Teams should consider using suitable tools for managing libraries and
vulnerabilities.

Guidelines for compliance

These are the guidelines that must be followed at all times.

Choosing a library

•	 Selection criteria
•	 Libraries that are included in an application must be well known, trusted and

widely used
•	 If library is not actively maintained, analyse carefully whether this is

acceptable or does it introduce unwanted risks for the application in the long
term

•	 Licensed in a way that does not put the organization in a legal conundrum.
A good source for information around licenses can be found here: https://
tldrlegal.com/licenses/browse. Discuss with your project manager who can
consult legal if needed.

•	 Document the chosen libraries using the provided template

Using a library

•	 Do follow all license terms and include acknowledgements and/or license
information if mandated. Not following the license terms and their requirements
can result in legal issues.

•	 Do not create private internal forks of libraries. Maintaining in-house versions of
open source libraries is not what our organization does.

•	 Do submit bug fixes to the library maintainer and create pull request if you come
across issues needing remediation

https://www.veracode.com/security/open-source-risk
https://www.zdnet.com/article/backdoor-code-found-in-11-ruby-libraries/
https://tldrlegal.com/licenses/browse
https://tldrlegal.com/licenses/browse

25 LocalTapiola | How to adapt information security in agile development?

•	 Read the library documentation and understand how it is supposed to be used. Be
aware of any security decisions and assumptions the library maintainer has made.
Library documentation often contains useful security and practical information.

Updating a library

•	 Libraries must be regularly updated.
•	 During development

•	 For applications that are under active development the required
timeframe for updating is one month/every sprint/every release/other.

•	 During sprints use available tools, such as npm audit or Veracode, to
verify the status of libraries in use.

•	 During maintenance
•	 For applications in production but not under active development, libraries

must be updated every six months.
•	 When libraries are updated, the requirement is to update libraries to the latest

minor version of the major version that is currently being used in the application.
Library major versions must be kept within one version of the current publicly
available stable major version.

Practical approach

A practical but pragmatic approach to library maintenance is needed. We do realize that
updating a library might cause the application to behave in mysterious ways. This how-
ever, is not a valid reason for not updating. During application development, libraries
should be updated in the most fearless way - as applications are nevertheless tested for
functionality, one should assume that if no issues are uncovered, the updated library ver-
sion is working correctly. For production applications not under current development,
simple functional tests must be conducted before going into production. The probabil-
ity for incompatibility is many times found in the release notes. By maintaining near-cur-
rent versions of libraries in applications, the probability for a catastrophic failure is heav-
ily reduced.

Vulnerability and patch analysis

Understanding the impact and technical details of vulnerabilities is paramount for
cost-efficient security. Vulnerabilities in libraries, even serious ones, may have no real-
world business impact. For example, if the vulnerability affects a function or module in a
library, which is not used by the application directly or indirectly (through library’s other
functions), there is no attack path for a malicious user to exploit the issues. Especially
during development, it may be easier to update the library than to perform a thorough
vulnerability and patch analysis for a suspected or identified issue. During maintenance
phase the situation may be different and if no new releases are planned for some time, it
may be worthwhile to do the analysis.

26 LocalTapiola | How to adapt information security in agile development?

Steps for vulnerability analysis

1.	 Collect technical vulnerability details
a.	 Description of impact and exploitability
b.	 Original vulnerability report (and proof of concept if available)
c.	 Change log, patch or commit

2.	 Analyse the data flow
a.	 Determine what parts of the component need to be reached in order to exploit

the issue
b. 	Analyse how user input passes through the application to the library

i.	 Does the application utilize vulnerable function(s) of the library
1.	 directly by calling them explicitly
2.	 indirectly by utilizing other features, which end up invoking

vulnerable features
ii.	 Is there input validation or other transformation affecting the data flow

1.	 strict input validation may prevent exploitation. Transformation or
partial validation may increase complexity of exploitation but not
prevent it

c.	 If input may reach the vulnerable functions, does the application logic or other
behaviour impact exploitation

i.	 reachable and exploitable in normal application flow
ii.	 reachable, but not exploitable because of reason X
iii.	reachable in corner cases (such as a specific error condition) and

exploitable
iv.	 reachable in corner cases but not exploitable because of reason X

3.	 Analyse the business impact for exploitable vulnerabilities
a.	 What can the attacker achieve with successful exploitation

i.	 Impact on assets (personally identifiable information, financial
instruments, brand and reputation, ..)

ii.	 Technical impact
b.	 Are there other elements in the architecture, which mitigate the issue partially

or completely
i.	 Does the mitigation work with current configuration or does it require

additional steps
ii.	 Has this been verified in practice

c.	 What are the prerequisites for successful exploitation?
d.	 Does the impact (considering exploitability requirements) constitute a real

world risk
4.	 Recommend remedial, corrective and preventive actions

a.	 Actions
i. 	 Update the affected software component with version n.nn
ii. 	Mitigate the vulnerability class / similar instances / this particular

vulnerability by implementing X,Y,Z in solution stack
iii. 	Mitigate the vulnerability class / similar instances / this particular

vulnerability by Z,Y,X in architecture component A,B,C
b.	 Schedule

i. 	 Given the real-world risk, when do we need to act

27 LocalTapiola | How to adapt information security in agile development?

HTTP headers and CORS
Application security can be improved or weakened by configuring certain HTTP level
headers. Setting up your environment the right way in the beginning strengthens the
security posture, and makes it harder to conduct certain attacks against the end users.
Suitable values can always be adjusted based on individual use cases.

HTTP configurations and hardening are implemented on load balancing / SSL termination
level, main application server, and/or web server - depending on your architecture and
current configuration. Technically speaking, configuration hardening is pretty straight-
forward and usually has little to no effect on application functionality (your mileage may
vary). It is highly recommended to harden the configuration in the test environment as
early as possible, so that any unwanted behaviour can be detected and the configuration
is an integral part of the testing process. Try to avoid situations where the configuration
differs in load balancer and web or application server. Understanding where the response
originates from and which component is controlling the headers (and when) may some-
times be tricky.

Header configuration

HTTP hardening consist of following subparts:

•	 required HTTP headers -- adding the headers and removing redundant headers
•	 cookie policies and cookie hardening
•	 CORS (Cross-Origin Resource Sharing)
•	 allowed HTTP methods
•	 other hardening, requirements and exceptions

Example configuration:

X-Frame-Options: DENY
X-XSS-Protection: 1; mode=block
Strict-Transport-Security: max-age=86400; includeSubDomains
Referrer-Policy: strict-origin-when-cross-origin
X-Content-Type-Options: nosniff
Clear-Site-Data: "*"
Cache-Control: no-store
Pragma: no-cache

Note! Clear-Site-Data should be served after logout only.

28 LocalTapiola | How to adapt information security in agile development?

CORS configuration

Consider to implement only if:

•	 application or API is intended to be used by a third-party web site

Default CORS configuration must apply - additional CORS headers for any part of the
application must not be defined. Differing needs must be documented separately using
a sequence or communication diagram. It is equally important to understand CORS as a
technique and the basis for using it.

If CORS options are implemented without careful planning:

•	 your application may leak data
•	 could make the application vulnerable to data alteration

Before attempting to create a CORS configuration, do familiarize yourself with Same
Origin Policy, Cross Origin Resource Sharing and pitfalls associated with opening up the
CORS configuration.

Following CORS headers are explicitly forbidden:

•	 Access-Control-Allow-Origin: <generated dynamically from client
sent Origin header>

•	 Access-Control-Allow-Origin: *

Further reading

•	 https://www.owasp.org/index.php/OWASP_Secure_Headers_Project
•	 https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
•	 https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
•	 https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
•	 https://www.w3.org/TR/cors/
•	 http://blog.portswigger.net/2016/10/exploiting-cors-misconfigurations-for.html
•	 https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
•	 https://www.owasp.org/index.php/SameSite

https://www.owasp.org/index.php/OWASP_Secure_Headers_Project
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://www.w3.org/TR/cors/
http://blog.portswigger.net/2016/10/exploiting-cors-misconfigurations-for.html
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
https://www.owasp.org/index.php/SameSite

29 LocalTapiola | How to adapt information security in agile development?

Afterword
The document you have in your hands is by no means meant to serve as a single truth.
The information presented here is based on processes, best practices, lessons learned and
collections of guidelines developed in LocalTapiola. We maintain and constantly develop
these guidelines internally and developers and service providers that deliver projects to us
always have the latest and finest versions available. The documentation is based on our
internal experience as well as many public sources - we have not really invented anything
new, we have only made an effort to gather important information into one single docu-
ment. We wanted to make a version of our security guidelines for secure development
available to the public for anyone to use as they might deem suitable. Hence, the ideas
and suggestions in this document may suit you well, - or not at all. It is up to the reader to
interpret and apply anything in this document and make it suitable for their own use. As
far as the more technical parts of this document goes - caveat emptor - they will become
outdated.

Also please notice - if you are working on LocalTapiola projects, please remind yourself
and your team that you should only use the latest version of these guidelines available
internally.

Reference list
•	 https://www.bsimm.com/
•	 https://www.owasp.org/index.php/Security_Champions
•	 https://www.owasp.org/index.php/Security_Champions_Playbook

Credits
•	 Leo Niemelä, LocalTapiola
•	 Elina Saartoala, LocalTapiola
•	 Markus Forsström, LocalTapiola
•	 Teemu Talvitie, LocalTapiola
•	 Maija Raitio-Hirvi, LocalTapiola
•	 Elina Partanen, Mint Security
•	 Thomas Malmberg, Mint Security
•	 Teemu Turpeinen, Mint Security
•	 Saku Tuominen, Mint Security
•	 Henri Lindberg, hmask

https://www.bsimm.com/
https://www.owasp.org/index.php/Security_Champions
https://www.owasp.org/index.php/Security_Champions_Playbook

